
J .  Pluid Meck. (1971), W O E .  49, part 1, pp.  1-20 

Printed in Great Britain 
1 

Generation of surf beat by non-linear wave interactions 
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Non-linear interactions among wind-generated gravity waves transfer energy to 
low frequency waves in a coastal zone. A transfer function is derived for a 
straight coastline of constant bottom slope. This model is applied to three 
actual cases, and numerical evaluation of the energy transfer produces low 
frequency spectra which are compared with observations. 

Introduction 
In  the late 1940’s Munk and Tucker each independently discovered and 

recorded small amplitude, near-shore sea surface fluctuations in the frequency 
band between wind-generated waves and oceanic tides (10-40 cycles/1000 sec). 
These long-period oscillations, termed ‘surf beat’ by Munk, seemed related to the 
wind-generated waves incident upon the coast. Munk (1949) and Tucker (1950) 
both noticed a linear correspondence between wind-generated and surf-beat 
wave amplitudes, and Tucker found that the long-wave troughs correlated with 
wind-generated wave group crests. However, a causative physical connexion 
between the two types of waves was not understood. Our aim here is to demon- 
strate that non-linear interactions among wind-generated waves can excite 
coastal edge waves in the surf-beat frequency range and to illustrate that 
observed surf-beat energy levels might be accounted for by this process. 

Investigations in non-linear water-wave theory suggest a mechanism for the 
inter-frequency energy transfer which seems involved in surf-beat generation. 
Commonly the full non-linear wave equations are approached with perturba- 
tion expansions; interactions among waves of a particular perturbation order 
then produce a transfer of energy to waves of higher order. The general method 
is demonstrated by Hasselmann (1961, 1963a, b) .  Potentially relating somewhat 
more specifically to surf beat, the work of Biesel(l952) showed that a long small- 
amplitude (second-order) undulation accompanies a fist-order wave group. The 
second-order wave is forced, having the length and frequency of the group and 
not of a free, gravity wave - and it is 180’ out of phase with the group in agreement 
with Tucker’s observations. Similar results were obtained by Longuet-Higgins & 
Stewart (1962) who formulated the second-order effects in terms of the momentum 
flux associated with the propagation of first-order waves. This formulation leads 
to a physical interpretation of the long wave generation, which Longuet-Higgins 
& Stewart (1964) give. In  regions of high waves the associated mass transport 
is greater than where the waves are low. Because of this difference in momentum 
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2 B. Gallagher 

flux, fluid tends to be expelled from the regions corresponding to group crests 
and piled up in the group troughs - creating a second-order, long wave moving 
with the group. In  the same paper, it is suggested that a t  the coast the swell is 
destroyed by breaking and the associated long wave is reflected seaward as a 
free wave. 

In  the present work, we extend the above ideas and examine quantitatively 
how a coastal region will respond to excitation produced by non-linear interac- 
tions among incident swell. The incident wind-generated waves are taken as the 
first-order solution in a perturbation expansion of the wave equations, and the 
surf beat is computed as the second-order low frequency solution. A transfer 
function is derived relating the surf-beat spectrum to the spectrum of incident 
swell, and numerical comparisons with observations are made. 

Derivation of response spectrum 
We use a model coastline which is straight and infinitely long, with the ocean 

bottom sloping downward offshore at a constant rate. An expression is con- 
structed to represent the first-order incident wind-generated waves, and this is 
used to put the second-order wave equation in explicit form. Assuming the 
second-order response is sinusoidal along the coast, we obtain an inhomogeneous 
Laguerre equation whose solution leads to the surf-beat spectrum. 

x,= recorder 

Sea surface 

z= -h= - R x  

Sea floor 

I., 

FIGURE 1. Coastal model and notation. 

We assume a perfect incompressible fluid, so that perturbation expansions of 
the governing equations lead to relations describing Airy waves. We assume 
further that: (a) Incident wind-generated waves are totally destroyed at  the 
shoreline, while low frequency waves are perfectly reflected. This, together with 
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the assumption below about inoident wave amplitudes, means we are asserting 
that processes inside the surf zone may be neglected; in effect, the shoreline is 
placed at  the outer edge of that region. (b)  Incident wind-generated waves do not 
change wavelength as they shoal, and their amplitudes grow exponentially 
towards shore. This is only a crude description of shoaling waves. However, we 
feel the physics of the non-linear interactions will not depend strongly on the 
exact details of the wave forms and have chosen this description to simplify the 
mathematics. (c) In  the first-order linear approximation, the wind-generated 
waves are statistically independent. This assumption is commonly taken in 
perturbation analysis of non-linear ocean waves; Hasselmann (1961) d' iscusses a 
possible statistical justification for doing so. (d) Shallow-water, or long-wave 
equatiom will give an adequate description of the surf-beat waves in the coastal 
region. (Wavelengths are of order 1 km, and depths of order 10-loom.) ( e )  L' inear 
bottom friction will be adequate to simulate energy losses from the second-order 
waves. In  the real world, edge wave energy is lost through bottom friction and by 
scattering to the open ocean induced by irregular topography. Linear friction 
correctly represents the mechanism of neither; it is merely a mathematioally 
convenient way to remove an equivalent amount of energy from the coastal zone. 

We express the velocity potential of the incident wind waves as a Fourier- 
Stieltjes expansion in frequency, w ,  and long-shore wave-number k. The GO- 

ordinate system and remaining notation are defined in figure 1. 

$(x, y, t )  = 1 j id$(%,  k, w )  ei(kg-ot), (14 
k = - m  o = - m  

d$ is related to spectral intensity, F ,  by 

4 (a$@) = F(x,  k, w)dkdw, 

where ( ) indicates ensemble averaging, and the overbar denotes a complex 
conjugate. Because $ is real, d$(k, w )  = @( - k, - w ) .  

Surface elevation is expressed in similar fashion 

J k = - m  J w = - m  

and we may convert surface elevation spectra to velocity potential spectra by 
using the linearized surface boundary condition, gc+ $t = 0: 

(a$@) = (g2/w2) ( d Z B ) .  

Under our assumptions, the first-order Fourier-Stieltjes amplitudes will 
depend on offshore distance as follows: 

d$(z, k, w )  = d$(k, w ) .  f(x, k, W) = d$(k, w)e-"(z-z~)-isgn(o)IzlS. 

x,. is the wave recorder location, a: a parameter of order one, and I ,  the x compo- 
nent of the wave vector, is obtained from the deep-water dispersion relation 
t2  = wyg2 - k2. 

1-2 
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Perturbation expansions of the irrotational wave equations are derived in 
standard references such as Stoker (1957). To second order in a small parameter, 
such as sea-surface slope, these are 

V2#(2) = 0, 

gQ2) + #i2) = - +[(#2))2 + (#$) )z  + ( $ 9 2 1  - [(1)&), at x = 0, 

<f4 - #:2) = - #:)<iV + #Li)[W - #$)ct), at 2 = 0, 

#L,) = - f f ’#E) ,  at x = - h = - H’x. 

Superscripts refer to the order of the variable in the perturbation expansion. 
First-order expressions for the incident waves have been given above, and the 
second-order solution, representing surf beat, is now sought. Combining the 
surface boundary conditions, using the shallow-water assumption, and inserting 
a linear friction term in the resulting wave equation, we obtain: 

a 

+ g[#$)[g) + # p p  - #“p)]z=O 

#I-”) + E # p ’  - (gh#p)z - (gh$iy))), = g {  - +[(#M))Z + (#$))2 + (#f))2] - g(”#:;)}z=o 

= q., y, t ) ,  (2) 

where E is the linear friction coefficient. 
Using the first-order solutions, 

k’k” + kl2 - d#(x, k‘, w ’ )  d$(x, k’, w”)  

ei[(k’-k”)y-(o‘-o”)tl 
7 

where-f; = af(x, k‘, w‘)/ax, etc., and to shorten ensuing expressions we write 

x d#(x, k’, 0’) @(x, k‘ - k, w‘ - w )  ei(ky-wt).  

Here k = k’ -k” ,  w = w‘-w‘‘ ,  and these definitions apply throughout the 
remainder of this section. 

To find #t2), we again expand: 
n n  

With the constant bottom slope H‘, and the abbreviation d# = d#c2)(x, k ,  w ) ,  
equation (2) becomes: 

= $Jw jw, q(x, k‘, k‘ - k ,  d, w‘ - w )  d#(x, k‘, 0‘) @(x, k‘ - E ,  w‘ - 0). (3) 
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Since this equation is linear we solve with one (k', of)-component of the driving 
function and then integrate the result. 

To get a convenient form of (3), substitute z = 2lklz and dy? = e-t2d$; a 
Laguerre equation results : 

f (G, k', w ' )  f(G,, k'-  k, d - w d$(k', w ' ) d ? ( k ' -  k ,  0'- w )  

= pd$(k' ,  w')d$(k'- k ,  o r - w ) .  

A solution may be expressed in terms of Laguerre polynomials, L,(z). 
Let m 

dllr = Z AnLn(z) 
n=O 

m 

and pd$d9 = C BnLn(z), 
n=O 

where n is integer and 

Substitution in the equation gives 

1 An = B n / [ n + t - m l  w2 + i€U 9 

where we have used the fact that ZL,, + (1  - x )  L,, + nL, = 0, along with the 
orthogonality of the Ln's. 

Working back through the substitutions made above, one obtains the solution 
to (3): 

d&z, k , w )  =I k' S w' (e-iklz ~ ~ L n ( 2 / k ( z ) ) d $ ( k ' , ~ ' ) ~ ( k ' - k , ~ ' - ~ ) ,  n Dn 
in which 

1, = IOm e-izq(G, k', k' - k, w',  w' - w 

L,(z)dz 

and D, = (n!)2[(2n+ 1)gH'Ikl -w2-ii8w]. 

Computing a spectrum, 

2F(k, w ) d k d w  = (d#(k,  w ) d i ( k ,  w ) )  
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where T stands for the integrand in brackets { } above. Under the assumption 
that the wind-generated waves have statistically independent Fourier-Stieltjes 
amplitudes, the only non-zero terms in the above product occur when k; = - k; 
and w; = - w i .  Dropping the subscripts, 

2F(k ,  w)dkdw = 4 T F F ( k ’ ,  w‘ )P(k ‘ -  k, 0‘- w)dk‘dw’d(k‘- k)d(w’ - w ) .  
- m  

k’ 0’ 

When the above integral is evaluated, it is necessary that dk = d(k ’ -k )  and 
dw = d(w‘ - w )  in order that each wind-wave spectral element contribute once 
and only once to the surf-beat spectrum. Furthermore, we must integrate F(k,  w )  
over k to get a result for comparison with observed non-directional long 
spectra. Then 

F ( w )  = J m  lm 2T~’6(k‘ ,w’)P(k’ -k ,w’-w)dk’dwrdk.  
- m  - w  -m 
k k‘ w‘ 

This is the final result; T is given by 

wave 

(4) 

T = e-lklz C ([ /om e-h(&, k‘, k’ - k, w’, w’ - w 
n 

, k’ - k, w - w L n ( z )  dx L,(217clx) [n !2((2n + 1)gH’I kl - w2 - iew)]) . 1 1  I 
In  the introduction, the idea was discussed that a long, low-amplitude, sea sur- 

face depression accompanies a group crest in wind-generated swell. The above 
analysis may be pictured in similar terms. In  ( 4 ) ,  each pair of incident swell trains, 
( k ’ , ~ ’ )  and (k’-k,  d - w ) ,  may be thought of as a ‘group’ which contributes 
one particular low amplitude wave, (k, w ) ,  to the total second-order response. 
Since k and w are independent variables, most of these second-order waves do not 
obey a free wave dispersion relation and simply remain forced - dependent on the 
existence of the swell groups which create them. However, there are some combi- 
nations of k and w in the driving function which do coincide with those of free 
waves in the coastal zone, and resonances occur. In the model used here, the 
free waves are edge waves, sinusoidal along shore, with offshore dependence 
described by Laguerre functions. Various modes of oscillation are specified by the 
index, n, of the Laguerre polynomials, and the appropriate frictionless, dispersion 
relation would be w2 = (2n+ 1)gH’Ikl. 

Model parameters and their effects 
Low frequency second-order response spectra are found through numerical 

evaluation of expression ( 4 ) .  We must provide a directional spectrum of incident 
wind-generated waves, as well as values for the bottom slope, the wave-recorder 
looation, the exponential rate at  which incident wave amplitudes grow toward 
shore, and the linear friction coefficient. The methods used in specifying these 
items, and the effects of varying the parameters are now discussed. 
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Directionality of incident waves 
The non-linear interaction of waves incident from different directions is 
important in the second-order coastal response, but directional information is 
not usually provided by the observations. To overcome this, we assume that the 
wind-generated waves arrive from some base direction determined by the storm 
location, and that these waves are spread statistically around the base direction 
in a 'beam'. With the base longshore wave-number ko, and a beam wave-number- 
width 2K,  we take 

1 77 

K 2K 
P ( w , k )  = P(w).-cos2- (k-k,), Ik-kol G K 

Increasing the angle 8, between the incident wave direction and the coastal 
normal, produces greater energy at higher surf-beat frequencies. This is because 
of an increase in the number of pairs of incident wave components that can 
interact in resonance with coastal edge waves. Figures 2 and 3 show schematic, 
incident wave spectra contoured in the w ,  k plane for two values of 8. The coin- 
ponent located at (X) may interact with any other in the beam, but for resonance 
to occur this second component also must lie on one of the family of parabolas 
corresponding to edge wave dispersion relations: (2n+ 1)gH'Ikl = w2. It is 
apparent from the diagrams that for larger values of 8 the intersection of an 
edge wave dispersion curve with the incident wave beam will be more extensive 
and will include higher edge wave frequencies. For the same reason, an increase 
in the incident wave beam width, p, also causes more excitation of the higher 
frequency edge waves, or surf beat. Sample computations showing these effects of 
beam direction and width on the response spectrum are shown in figure 4 ( e )  

Frequency, (Hz) --f 

FIUURE 2. Schematic incident wave spectrum and edge wave 
dispersion relations in the w ,  k plane. 
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Frequency (Hz) + 

'\ 
n = l  

FIGURE 3. Schematic incident wave spectrum and edge wave 
dispersion relations in the w ,  k plane. 

Bottom slope 
Bottom slope affects the response spectrum in two ways, each having the 
result that steeper bottoms favour the higher frequency surf-beat components. 
First, the slope influences the number of incident wave pairs that can resonate 
with a given edge wave mode and frequency. This can be seen in the w, k diagrams 
of figures 2 and 3, where first-mode edge wave dispersion curves are drawn for two 
different slopes. Within the range of realistic slopes (H' = 0.01 - 0.10, say) the 
dispersion relations and incident wave beams will intersect more extensively and 
at  higher frequencies as bottom slope is increased. Secondly, coastal edge wave 
energy decreases with distance offshore like LE, as seen in equation (4). These 
functions have exponential envelopes, e - 2 1 k 1 X ;  using the dispersion relation, we see 
that a t  any given distance offshore, such as at the recorder location, this envelope 
becomes proportional to ecw2IH'. Thus with steeper bottom slopes surf-beat energy 
is less strongly frequency-attenuated a t  any particular spot. This second result of 
slope compliments the first, and the combined effects on an exampIe response 
spectrum are shown in figure 4 (a).  

To apply the model to actual coasts it is necessary to assign a single bottom 
slope somehow equivalent to the multiple slopes usually found in reality. In 
specific cases to be discussed shortly, the bottom sloped quite gradually away 
from the beach and then more rapidly offshore, with a rather definite break. 
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Experience showed that an average of the two gradients was a good first approxi- 
mation to  assign in the model. 

Recorder location 

x, is the distance outside the breakers (the assumed shoreline) at which wind- 
wave and surf-beat spectra are actually measured, and at which the computed 
second-order spectrum is to be evaluated. Decreasing xr shifts computed surf- 
beat energy toward higher frequencies. This is predictable from the form of the 
Laguerre functions together with the edge wave dispersion relation. Edge wave 
amplitudes decrease away from shore according to L,(2lk[x). If we shift the 
evaluation point, 5 = x,,, closer to shore, then any particular edge wave amplitude 
will be associated with a larger longshore wave-number and henoe with higher 
frequency. Figure 4 ( b )  shows this effect in an example computation. 

Assigning x, involves problems when the model is applied to field observations; 
a stationary straight line must be used to  represent the outer edge of the surf 
zone. In  reality this boundary can undergo temporal excursions in response to 
tides and to changes in swell conditions, and furthermore, actual ‘straight’ 
coastlines are not perfectly so. Thus we must choose an ‘effective’ x,. A physically 
reasonable distance which gives the model predictive value would be ‘effective ’, 
and we have been able to make such assignments in the cases studied. 

Incident wave amplitude exponent 

The amplitude of incident waves was taken to increase shoreward as 

exp ( - a!(% - q)). 

The shoreward steepness and amplitude of the second-order excitation will 
therefore increase as a! is made larger, favouring the higher frequency edge wave 
responses, which have corresponding larger shoreward steepness. This anticipated 
effect is seen in figure 4 (d). 

We expect intuitively that the amplification of shoaling, incident waves may 
be more pronounced when their frequency spectrum is narrow. Thus, in a compu- 
tation involving incident swell from a distant storm we chose a by assuming that 
the shoreline wave heights were three times greater than at  100 m offshore. In  two 
cases where a broad spectrum of incident waves was provided by a nearby storm, 
a! was taken as zero. 

Friction coeficient 

The linear dissipation parameter, 8, is adjusted empirically to obtain agreement 
between computed and observed surf-beat energy levels at  a given location. 
Values in the range sec-1 produce the best results, and at this dissipa- 
tion level, the resonant free edge waves contribute virtually all of the observed 
surf-beat energy. Then low frequency energy density is proportional to  E - ~ ,  as 
shown in the example computations of figure 4 (c). 

The need for an empirically determined dissipation parameter is unfortunate; 
independent checks are required before full confidence can be placed in com- 
puted energy levels. We can present two such checks now and point out where 
further investigation is needed. First of all, 8, which is intended to represent both 

- 
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FIGURE 4. Effects of individual coastal model parameters. Curves are linear interpoIations 
between points computed using equation (4) and the incident wave frequency spectrum of 
figure 6. (a) 5, = 100 m, e = 1.575 x 10-6, 8 = 40.5, /3 = 5.0. (b)  H' = 0.0232, E = 1.575 
x 0 = 406 ,  ,8 = 5.0. (c) z, = 100 m, 8 = 40.5, /3 = 5.0, a = In 2/xr. ( d )  x, = 100 m, 

E = 1.575 x 0 = 40.5, /3 = 5.0. (e) z, = 100 m, f i  = 5.0, a = In 2 / g ,  E = 1.575 
x 10-6/2. (f) z, = 100 m, a = In 2/xr, E = 1.575 x 10-6/2, 8 = 40.5. 
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frictional and scattering losses, might depend on coastal and bottom topography 
and hence be a function of location. But at any given spot, a 6xed value of E 

should serve under a variety of input and response conditions. This was found 
true at Cape Palliser, New Zealand when surf-beat energy levels varied over an 
order of magnitude (cases 2 and 3) ; the e-empiricism would have allowed the model 
to have rough predictive value. Secondly, a long-wave energy relaxation time 
should be approximately e-l for a given coast. At Cape Palliser the empirically 
determined E yields a relaxation time of about 1-4 days, and this is in rough 
agreement with actual observations (see figure 8). The model also was applied to a 
location on the California coast (case 1). Here a smaller dissipation value was 
required; it corresponds to a relaxation time of 5.5 days but we have no observa- 
tions to check this value. Since the coast is longer and less rugged than in New 
Zealand, one might expect a longer decay time. On the other hand, incident swell 
conditions can change appreciably in much less than five days, so a given surf- 
beat record might be highly contaminated by energy having nothing to  do with 
local generation. This could have been true on the occasion we examined, in which 
case the computed E is too small, and the implied decay time too large. More 
study and observations are needed on this point. However, the New Zealand 
examples show that there are locations where linear dissipation and the 
empirically determined rates have some value in representing reality. 

Number of edge wave modes used 
The transfer function in equation (4) contains a sum over all edge wave modes. 
Complexity of numerical evaluation increases rapidly with the number of modes 
included, so there is motivation to truncate the series at a small number of terms. 
Munk, Snodgrass & Gilbert (1964) found that edge wave energy observed along 
the coast of Southern California was concentrated in the two gravest modes. 
Here we have included the three gravest modes; their individual contributions to 
the total computed spectra are shown in figures 7 and 11. Although our computa- 
tions seem reasonably satisfactory with the exclusion of higher modes, and 
although the cited observations did not reveal them on the occasion studied, their 
existence and potential importance may warrant future study. 

Comparison with observations 
Case one: Camp Pendleton (Oceanside), California, 13 November 1962 

In  this example, waves from a distant storm arrive on a long, relatively straight, 
continental ooast at  a time when local weather conditions are quiet.t The 
measured spectrum is plotted in figure 5.  The offshore islands of Santa Catalina 
and San Clemente provide a 'window' on this storm which defines the base 
direction for the incident waves. They approach the beach a t  40.5' to the local 
normal, and this value was used in the numerical model along with an assumed 
wave beam width of 20'. The offshore bottom profile shown in figure 6 was 

t M/Sgt. William Powers (USMC), who studied these waves, kindly provided the 
information on the weather, the input direction, and the spectrum itself. 
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FIGURE 6 .  Bottom profiles a t  (a) Oceanside (Camp Pendleton), 

California and at ( b )  Cape Palliser, New Zealand. 
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approximated by an average of the two slopes present. Waves were recorded at  
an instrument location which Munk et al. (1964) describe as 500m from shore but 
just seaward of the surf zone. In  the model, the recorder was assumed to be 100 m 
outside the breaker line, with the incident swell amplitudes increasing exponen- 
tially by a factor of three between the recorder and the breaking point. The 
friction coefficient was set a t  2.1 x lO-*sec-l to produce general agreement be- 
tween computed and observed surf-beat energy levels. 

I OD 

lo - '  

l o - ?  

0 10 20 30 40 50 

c/ks 

FIGURE 7. Computed and observed surf-beat spectra ; Oceanside, California, 13 November 
1962. H' = 0.0232, zr = 100 m, 8 = 2-1 x see-l, a = In (3)/9+, 8 = 40.5', ,8 = 20.0". 
Mode:--, 1 ; - - - , 2 ; - - , 3 .  

With the above parametric values, evaluation of equation (4) produces a 
spectrum not unlike what was observed (figure 7). However, conclusions are hard 
to draw from this isolated example. The parametric values employed do not seem 
unreasonable, but the selection of an 'effective ' recorder location and an energy 
dissipation rate is somewhat arbitrary and leaves room to 'tune' the model. 
However, experiments with parameter changes show that the model is not in a 
highly critical state of h e  tuning; 10 % variations from the values used here 
would not drastically alter the results (see figure 4, which is based on the 
present case). 

Case one illustrates that non-linear wave interaction is not completely un- 
reasonable as a mechanism for generating surf beat. However, as mentioned in a 
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FIGURE 9. Great-circle chart based on Honolulu, showing storm locations marked by dots 
and fractional dates (527.4 means 27 July, 9.6 UMT). (From Snodgrass et al. (1966) by 
permission.) 
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previous section, we do not know whether the dissipation rate properly charac- 
terizes this coastline, and if it does, whether we are dealing with a spectrum 
strongly contaminated because of the 5.5 day relaxation time. It would be well to 
examine examples where there is independent evidence about dissipation and a 
chance to test the predictive value of the analysis. This is done in cases two and 
three. 

Cases two and three: Cape Palliser, New Zealand 

Two examples from Cape Palliser provide a stronger test of the analysis. In case 
two, the parameters are roughly set so that a typical surf-beat condition is 
modelled. The dissipation rate found by this process implies a long-wave 
relaxation time of 1.4 days, which is consistent with the observed decay time 
seen in figure 8. The same model is then applied to an occasion when actual surf- 
beat activity was unusually high, and the observed order-of-magnitude energy 
increase is correctly predicted over most of the frequency range involved (case 
three). 

Several months of wave observations were taken a t  Cape Palliser in 1963 as 
part of a wave propagation study reported by Snodgrass et al. (1966). A plot of 
wave energy as a function of frequency and time (figure 8) shows several vertical 
ridges crossing surf-beat frequencies - each associated with a local storm. The 
surf-beat ridge of 14 August was chosen for the second example because it is 
representative of several such occurrences. On 26 July the low frequency energy 
ridge is anomalous (an order of magnitude higher than any other such feature 
observed in three months) even though the wind-wave frequency spectrum is 
similar to that of 14 August. This unusual condition was selected for the third 
example. 

A bottom profile along the local normal to the depth contours (331") is shown 
in figure 6 along with the slope of 0.07 chosen for the model. Since the storms of 
26 July and 14 August were both quite close to Cape Palliser (see figure 9), the 
incident waves were probably still under the influence of the wind as they 
approached shore. The shapes of the frequency spectra (figures 10 and 12) indicate 
little dispersion. This, together with the relatively steep bottom led us to choose 
cc = 0, which means the incident waves underwent no appreciable shoaling 
transformation in their approach to the surf zone. The actual wave recorder was 
740m from the water's edge; in the model, the line representing the 'effective' 
outer edge of the surf zone for the entire coast was chosen 100 m inshore from the 
instrument. 

In  case two, the direction of incident wave approach (325") was taken from the 
storm centre location in figure 9, and a beam width of 24" was assigned. The 
dissipation parameter was adjusted to 8-26 x which brings the computed 
surf-beat spectral level into general agreement with observation. This example 
provides a second demonstration that non-linear wind-wave interactions could 
be responsible for an observed surf-beat spectrum, as seen in figure 11. 

The only factor to  differ appreciably between cases two and three is storm 
location. On 14 August the wind waves approach the coast almost straight-on ( S O ) ,  
whereas on 26 July they come in at a larger angIe (30"). Accordingly, we take the 
same coastal model used in case two, and introduce the wave frequency spectrum 
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FIGURE 11. Computed and observed surf-beat spectra: Cape Palliser, New Zealand, 
14 August 1963. H' = 0.07, zr = 100 m, E = 8.26 x sec-l, a = 0, 0 = 6", p = 24'. 
Mode: -, 1; - - -, 2;  --, 3. 
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and the greater incidence angle from 26 July. The primary new feature of the 
observations is predicted correctly; surf-beat energy is an order of magnitude 
higher than on 14 August. The f i s t  of the computed curves in figure 13 shows this. 
Computations fall short of observed levels a t  lower frequencies, indicating that 
the model contains shortcomings. However, it would have served as a crude, 
qualitative predictor even in this apparently extreme case. 
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FIGURE 12. The frequency spectrum observed at Cape Palliser, 
New Zealand, 26 July 1963. 

In the above computation, incident wave beam width was among the model 
parameters held constant between cases two and three, because a change would 
not be strictly justified by our incomplete knowledge of the directional spectra. 
To see the effect of an arbitrary beam width selection, we produced the second 
computed spectrum in figure 13 by using half the original value. The overall 
predictive value and shortcomings of the model remain about the same. 

To illustrate further the isolated effect of storm location, we 'moved' the 
26 July storm to  the location of the 14 August storm and repeated the analysis. 
This produced marked decrease in surf-beat activity as seen in the last computed 
spectrum of figure 13. 

The computer time required for this work was furnished and underwritten by 
the Statistical and Computing Center at the University of Hawaii. This is con- 
tribution no. 389 from the Hawaii Institute of Geophysics. 
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FIG~RE 13. Computed and observed beat spectra: 
Cape Palliser, New Zealand, 26 July 1963. 
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